

COURSE CODE	COURSE NAME	L	Т	Р	CREDIT	YEAR OF INTRODUCTION
101908/CH922S	ENGINEERING CHEMISTRY LAB	0	0	2	1	2021

1. Preamble

To impart scientific approach and to familiarize with the experiments in chemistry relevant

for research projects in higher semesters

2. Prerequisite

Experiments in chemistry introduced at the plus two levels in schools

3. Syllabus

List of Experiments (Minimum 8 Mandatory)

- 1. Estimation of total hardness of water-EDTA method
- 2. Potentiometric titration
- 3. Determination of cell constant and conductance of solutions.
- 4. Calibration of pH meter and determination of pH of a solution
- 5. Estimation of chloride in water
- 6. Identification of drugs using TLC
- 7. Determination of wavelength of absorption maximum and colorimetric estimation of Fe^{3+} in solution
- 8. Determination of molar absorptivity of a compound (KMnO₄ or any water soluble food colorant)
- 9. Synthesis of polymers (a) Urea-formaldehyde resin (b)Phenol-formaldehyde resin
- 10. Estimation of iron in iron ore
- 11. Estimation of copper in brass
- 12. Estimation of dissolved oxygen by Winkler's method
- 13. (a) Analysis of IR spectra (minimum 3 spectra) (b) Analysis of ¹H NMR spectra (minimum 3 spectra)
- 14. Flame photometric estimation of Na^+ to find out the salinity in sand
- 15. Determination of acid value of a vegetable oil
- 16. Determination of saponification of a vegetable oil

4. Text Books

- 1. Muhammed Arif, *Engineering Chemistry Lab Manual*, Owl publishers, 2019.
- 2. Ahad J., *Engineering Chemistry Lab manual*, Jai Publications, 2019.

- 3. Roy K Varghese, *Engineering Chemistry Laboratory Manual*, Crownplus Publishers, 2019.
- 4. Soney C George, Rino Laly Jose, *Lab Manual of Engineering Chemistry*, S. Chand & Company Pvt Ltd, New Delhi, 2019.

5. Reference Books

1. G. Svehla, B. Sivasankar, *Vogel's Qualitative Inorganic Analysis*, Pearson, 2012.

2. R. K. Mohapatra, *Engineering Chemistry with Laboratory Experiments*, PHI Learning, 2017.

6. Course Outcomes

After the completion of the course the student will be able to

- **CO1:** Understand and practice different techniques of qualitative and quantitative chemical analysis to generate experimental skills and apply these skills to various analyses
- **CO2:** Develop skills relevant to synthesize organic polymers and acquire the practical skill to use various chromatographic techniques like TLC for the identification of drugs and chemical compounds
- **CO3:** Develop the ability to understand and explain the use of modern spectroscopic techniques for analysing molecular chemical structure by interpreting IR and NMR spectra of organic compounds
- **CO4:** Acquire the ability to understand, explain and use instrumental techniques for chemical analysis
- **CO5:** Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments
- **CO6:** Function as a member of a team, communicate effectively and engage in further learning Also understand how chemistry addresses social,

economical and environmental problems and why it is an integral part of

curriculum

C07: An ability to analyze the quality of water by determining its chemical parameter

. Mapping of course outcomes with Frogram outcomes												
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3				2							3
CO2	3				3							3
CO3	3				3							3
C04	3				3							3
C05	3				1							3
C06	3				1							3
C07	3		1			1	1					

7. Mapping of Course Outcomes with Program Outcomes

8. ASSESSMENT PATTERN

Learning Objectives	CIE (80)
Remember	20
Understand	30
Apply	15
Analyse	15
Evaluate	
Create	

9.Mark Distribution

Total	CIE							
	Attendance	Internal	Lab work/	Total				
		Examination	Record/Viva-voce					
100	20	30	50	100				

10. End Semester Examination Pattern

There is no End Semester Examination.